
嘉義市北興國中一○九學年度第二學期第二次段考數學科二年級___班___號姓名:_________
一、選擇題(每題 3分,共 36 分)
1. 如右圖,直線
L
1、
L
2相交於一點。若∠1=(3
x
+16)°,∠2=(4
x
+3)°,則∠1=?
(A) 85 (B) 87 (C)90 (D)92 度。
2. △
ABC
中,∠
A
的外角為 105,∠
B
比∠
C
大25,則∠
B
=?(A) 55°(B) 65°(C) 75°(D) 85°
3. 下列哪一組不可以作為直角三角形的三邊長?
(A)√3、√5、2√2 (B) 5、12、13 (C)8、15、17 (D) 13、14、15
4. 利用尺規作圖在𝐴𝐵
=3:5,則最少需要作幾次垂直平分線?
(A) 5 次 (B) 4 次 (C) 3 次 (D) 2 次。
5. 如圖(一),△
ABC
中,直線
L
是𝐴𝐵
=14,則△
ACE
的周長為
何?(A) 32 (B) 33 (C) 34 (D)35 。
6. 如圖(二),△
ABC
中,
D
、
E
兩點分別在𝐴𝐶
。若∠
A
=40
°
,
∠
ABD
:∠
DBC
=3:4,則∠
BDE
=?(A) 25° (B) 30° (C) 35° (D) 40°
7. 如圖(三),長方形
ABCD
中,
E
點在𝐵𝐶
=30,則△
AEC
面積為何?
(A) 60 (B) 90 (C) 120 (D) 150
8. 如圖(四),△
ABC
與△
DEC
均為正三角形,
=6求四邊形
ABED
的面積為何?
(A) 30√3 (B) 30√6 (C) 27√3 (D) 27√6
圖(一) 圖(二) 圖(三) 圖(四)
9. 如右圖,甲、乙、丙、丁四位同學分別想依下列的條件作出一個與△
ABC
全等的三角形,如圖所示。
已知四人所用的條件如下:
甲:𝐴𝐵
=2
cm
,∠
A
=90°
若發現其中一人作出的三角形沒有與圖的△
ABC
全等,則此人是誰?(A) 甲 (B) 乙 (C) 丙 (D) 丁
10. 請問下列敘述何者正確? (A)任意三角形的一組外角和為 180 度 (B)三角形每一個內角都與外角互餘
(C)一角的角平分線上任一點到此角的兩邊距離都相等 (D)等腰三角形一定是銳角三角形。
11. 如圖,五邊形
ABCDE
中有一正三角形
ACD
。若𝐴𝐵
,∠
E
=110°,則∠
BAE
的度數
為何?(A) 115° (B)
120° (C)
125° (D) 130°