1
112 學年度全國高級中學分科測驗數數學甲 B 卷(112-E5)
第壹部分:選擇(填)題(占 76 分)
一、單選題(占 18 分)
1. 複數平面上有一非零複數 z,若
2
z
到 1 的距離等於
2
z
到
1
−
的距離且
2
z
的虛部小於 0,則下
列何者正確? (1)z 到 1 的距離等於 z 到 0 的距離 (2)z 到 1 的距離等於 z 到
1
−
的距離
(3)z 到 1 的距離等於 z 到
i
−
的距離 (4)z 到 1 的距離等於 z 到 i 的距離
(5)z 到 1 的距離等於 z 到1 i
+ 的距離
2. 將一個正立方體木塊的六面塗上紅色後,各邊再平分成 n 段(
2
≥
n
),並將此正立方體切割
成
3
n 個大小相同的小正立方體。若這
3
n 個小正立方體中,至少一面有塗色的小正立方體有
n
a 個,令
2
4
2
200
k
S
a
a
a
a
=
+
+ +
+ +
,則
S
log
最接近下列哪個數值?
(1) 5
.
5 (2) 6 (3)
5
.
6 (4) 7 (5)
5
.
7
3.
8
cos
2
2
8
sin
1
2
+
+
−
的化簡結果為何?
(1)
4
cos
4
4
sin
2
−
(2)
4
cos
2
2
4
sin
2
−
(3)
4
sin
2
4
cos
4
−
(4)
4
cos
4
(5)
4
sin
2
−
二、多選題(占 40 分)
4. 已知 a , b 為實數,
2
( )
f x
x
ax b
=
+
+ ,試選出正確的選項。(1) ( )
f x 必有最小值
(2)當
2
=
a
時, ( )
f x 的最小值為 ( 1)
f
− (3)當
2
=
a
,
0
=
b
時, ( )
f x 在
1
0
≤
≤ x
時的
最大值為 3 (4)若 ( )
f x 在
1
0
≤
≤ x
時的最大值為 3,則
2
=
a
(5)若 ( )
f x 在
1
0
≤
≤ x
時
的最大值為 0,則
0
=
b
或
1
−
=
+ b
a
5. 設 x 、
y
、
z
均為非零實數, a 、 b 、 c 均為不等於 1 的正實數,且
x
y
z
a
b
c
=
= ,
試選出正確的選項。 (1)若
2
=
a
、
4
=
b
、
8
=
c
,則
1
:
2
:
3
:
:
=
z
y
x
(2)若
1
=
ab
,則
x
y
−
=
(3)若
c
b
a
>
>
,則
z
y
x
<
<
(4)若
c
ab
= ,則
z
y
x
=
+
(5)若
1
=
abc
,則
z
y
x
1
1
1
+
+
之值為 0
6. 若 S 為 (1,1) 、 ( 1,1)
−
、 ( 1, 1)
− − 、 (1, 1)
− 四頂點所形成的正方形邊界,經矩陣
A
線性變換後
為 S ′ ,試選出正確的選項。 (1)當
−
=
1
0
0
1
A
時, S 和 S ′ 不相交 (2)當
=
3
0
0
2
A
時, S 和 S ′ 不相交 (3)當
°
°
°
−
°
=
270
cos
270
sin
270
sin
27
cos
A
時, S 和 S ′ 重合
(4)當
°
−
°
°
°
=
270
cos
270
sin
270
sin
270
cos
A
, S 內部和 S ′ 內部重疊的面積小於 3
(5)當
−
=
1
0
2
1
A
時, S 內部和 S ′ 內部重疊的面積為 2
7. 甲、乙兩人依序投擲飛鏢的規則如下:由甲先開始投擲,若甲命中紅心則繼續投擲,若甲
未命中紅心則換乙投擲,直到乙未命中紅心為止,此時兩人結束投擲飛鏢。無論前一次投
擲飛鏢的結果如何,甲每次投擲的紅心命中率皆為 0.6,乙每次投擲的紅心命中率皆為 0.3,
若隨機變數 X 表示甲投擲的次數,隨機變數 Y 表示乙投擲的次數,試選出正確的選項。
(1)
(
1)
0.6
P X
= =
(2)
(
1
1)
0.28
P X
Y
=
= =
且
(3)
(
3)
0.45
P X
Y
+ > >
(4)
5
( )
3
E X
=
(5)
30
( )
49
Var Y
=
RA5125
2
8. 已知坐標平面上一個圓與兩軸均有相交,此圓被 x 軸截成兩段弧長比為
3
:
1
的圓弧,
且圓截 x 軸所得之弦長為 2,又圓心
(
)
b
a
O
,
′
到直線
0
2
=
− y
x
的距離為
5
5
,
試選出正確的選項。 (1)圓心到 x 軸的距離為半徑的
2
2
倍 (2)
1
2
=
− b
a
(3)圓的半徑為
2 (4)圓心在直線
x
y
=
上 (5)滿足條件的圓有兩個
三、選填題(占 18 分)
9. 印有 1、3、5、7、9 的五張卡片,其中 9 可當作 6 使用,則從中抽出三張卡片,可以
排成 個不同的三位數。
10.如右圖所示,由兩個全等的灰色正方形及四個全等的平行四邊形
不重疊且無空隙拼成一個正八邊形。若正方形的邊長為 2,
則
AE BC
⋅
的值為 。(化為最簡根式)
11. 已知在複數平面上
8
4
7
144
0
z
z
−
−
=
的 8 個根形成一個凸八邊形,則這個八邊形的面積
為 。(化為最簡根式)
第貳部分:混合題或非選擇題(占 24 分)
12-15 題為題組
空間中有四個平面:
1
E :
0
=
+
+
z
y
x
、
2
E :
3
=
+
+
z
y
x
、
3
E :
9
=
+
+
z
y
x
及
4
E :
0
=
−
+
z
y
x
,若
4
E 上有一正三角形 ABC ,而
A
、
B
、 C 也分別在
1
E 、
2
E 、
3
E 上,此
正三角形與
2
E 的截痕為
BD
,試回答下列問題。
12.
1
E 和
2
E 的距離為何?(非選擇題,2 分)
13.若
a
AD
= ,則
BD
長為何?(單選題,3 分)
(1)
a
3
(2) a
2 (3)
a
5
(4)
a
6
(5)
a
7
14.若
2
E 和
4
E 的銳夾角為
θ
,則
θ
cos 之值為何?(非選擇題,2 分)
15.試求
A
到
BD
的距離及正三角形 ABC 之邊長。(非選擇題,5 分)
3
16-18題為題組
一橢圓
2
2
:
1
100
225
x
y
Γ
+
=
之焦點為
1
F 、
2
F (其中
2
F 在
1
F 下方)
,另有一開口向右之拋物線,其焦點為
2
F ,且與 Γ 在第四象限
相交於 P、Q 兩點,若
1
2
90
F PF
∠
=
,試回答下列問題。
16.設 O 為原點,則 OP 長為多少?(單選題,4 分)
(1) 5 5 (2) 4 5 (3) 5 3 (4) 4 3 (5) 10
17.試求出 P 點坐標。(非選擇題,4 分)
18.試求出拋物線之準線及焦距。(非選擇題,4 分)
參考數值:
2
1.414, 3
1.732, 5
2.236, 6
2.449,
3.142
π
≈
≈
≈
≈
≈
對數值:
log 2
0.3010, log 3
0.4771, log 5
0.6990, log 7
0.8451
≈
≈
≈
≈
x
y
O
P
Q
1
F
2
F
2
2
:
1
100
225
x
y
Γ
+
=
4
RA5125
112 學年度全國高級中學分科測驗數數學甲 B 卷(112-E5)
參考答案
選擇題:1.(3) 2.(4) 3.(5) 4.(1)(2)(3)(5) 5. (2)(5) 6.(2)(3)(5) 7.(2)(3)(5) 8.(1)(2)(3)(4)(5)
選填題:9. 96 10.
4 4 2
+
11. 4 6
混合題或非選擇題:12.
3 13. (5) 14.
1
3
15.
3 6
( ,
)
4
d A BD
=
;△ABC 邊長
3 14
2
16. (1) 17.
(4 5, 3 5)
−
18. 準線為
4 5 10
x
=
− ,焦距為 5 2 5
−