
113年公務人員普通考試試題
※注意:禁止使用電子計算器。
不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。
本科目除專門名詞或數理公式外,應使用本國文字作答。
代號:
頁次:
-
一、給予下列訊號()= 8cos10 + 
 + 4sin4 + 
,
請畫出()的單邊頻譜(single-sided spectra)與雙邊頻譜(double-sided
spectra)。(25 分)
(注意:頻譜包含振幅跟頻率的關係與角度跟頻率的關係)
二、若()的傅立葉轉換()如下圖所示:
試問:
若要取樣該訊號則最小取樣頻率為何?(10 分)
若取樣頻率為最小取樣頻率,取樣後在時間上的訊號模型為何?(5分)
承第小題,該訊號的頻譜響應為何?(5分)頻譜圖又為何?(5分)
X(f)
f
-10 Hz 10 Hz
 

代號:
頁次:
-
三、假設一訊號()為()= 4 cos(20),
試問:
此訊號()的功率為多少?(5分)
正規化()使正規化的訊號有最小振幅-1,則此訊號的數學模型為
何?(5分)
若未調變訊號為100 cos 200,用振幅調變來傳遞此訊號,則此振幅
調變訊號為何?(調變指數為 0.5)(10 分)
此振幅調變訊號的傅立葉轉換為何?(5分)
四、今有一訊號()= 10cos(10),
試問:
()經過希爾伯(Hilbert)轉換後的訊號()為何?(10 分)
()的傅立葉轉換為何?(5分)
承第小題,如何利用該訊號產生出()的單帶(single-sideband)訊
號。(假設未調變訊號為Acos(200))(10 分)