
第1頁 共4頁
花蓮縣立宜昌國民中學 109 學年度第一學期 第三次段考 8年級數學科 試題卷
命題教師:楊家齊老師 考試範圍:康軒版 3-2~4-3 8年____班____號 姓名:___________
一、選擇題:(每題 4分,共 20 分,請作答在答案卷上)
1. 下列選項何者為一元二次方程式?
(A) (x-2)(x-3)=5 (B) 3x2+5x-8=x(3x-1) (C) x2+8x+7 (D) x-32=0
2. 在一元二次方程式 ax2+bx+c=0中,已知有一根為 4,且 a、b、c皆為整數,則下列何者正確?
(A) c=16a+4b (B)方程式另一根為-4 (C) (x-4)是ax2+bx+c的因式 (D) a、b、c其中一個是 4
3. 若考慮用不同方法解一元二次方程式 x2-8x=6,則下列選項何者正確?
(A) 若用提公因式來解,可得 x(x-8)=6,因為
,所以 x=2或11
(B) 若用公式解,則可得 x=
(C) 若用配方法,則要在等號兩邊同加 64
(D) 若用配方法,則過程中會得出(x-4)2=22
4. 有四人在討論(x+1)(3x+1)=(x+1)(8x-5)的解法,請問何者說的是對的?
(A) 小依:在等號兩邊同除以(x+1)後,可得(3x+1)=(8x-5),所以原方程式的解為
(B) 小山:小依是錯的,因為(x+1)有可能是 0
(C) 小武:但(x+1)可能是 0也可能不是 0,所以應該可以同除以(x+1)
(D) 小七:反正小依是錯的,所以用
代入原方程式,等號左右兩側也不會相等啦
5.
是一個一元二次方程式,@的位置是一個運算符號,已知這個方程式有兩個整數解,則下
列敘述何者正確?
(A) @只可能為+ (B) @只可能為- (C) @有+或-兩種可能
(D) 不論@為+或-都不可能有兩個整數解
*數學段考說明和注意事項:
(1) 題目共 4 頁,雙面列印,選擇題都只有一個正確或最佳的答案,測驗時間 60 分鐘。
(2) 請將選擇題、填充題、計算題的答案用黑筆寫在答案卷上
(3) 填充題、計算題答案若為分數,請以
最簡分數
型態表達。
(4) 卷末有公式表可利用

第2頁 共4頁
二、填充題:(每格 3分,共 60 分。請將答案填寫在答案卷上)
1. 請用十字交乘法將下列各式因式分解 (不是解出 x,別寫錯)
(1) x2-7x+10=________ (2) -x2-5x+6=________ (3) x2-2x-8=________
(4) 6x2+13x+6=________
2. 求出下列各方程式的答案
(1) x(x+3)=0,x=____ (2) (x-1)(x+7)=0,x=____ (3) x2-25=0,x=_____
(4) (x+5)(2x+1)=(x+5)(3-x),x=____ (5) 25x2-30x+9=0,x=____
(6) (2x+9)(x+1)=15,x=__ (7) (x-4)2=3,x=__
(8) x2-4x-9996=0,x=____ (9) 2x2+x-5=0,x=____
3. 請判斷下列方程式的解的狀況,並填入「兩相異根」、「 重根」、「無解」
(1) 3x2-2x+5=0,答:_____ (2) x2+4x-4=0,答:_____ (3) x2-6x+9=0,答:____
4. 有一式為
+△,則當△=____時,該式可成為完全平方式

第3頁 共4頁
5. 已知 x的一元二次方程式 x2+mx+n=0的兩根為-1或3,則 m+n=_____
6. 已知 x2-4x-5=(x+1)(x-5),請利用這個結果計算
=______
7. 小明用邊長為 x的大正方形 5塊、長寬分別為 x和1的小長方形 12 塊、邊長為 1的小正方形 4塊,拼
成一個大長方形,若中間並沒有重疊的部分,請問最後的大長方形周長為_______
三、計算題:(每題 5分,共 20 分。請將計算過程及答案填寫在答案卷上)
1. x 的一元二次方程式 ax2+bx+1=0兩根為 x=
,請分別求出 a和b的值
2. 已知 x的一元二次方程式(3m-4)x2+x-(m+1)=0有一根為 1,試求
(1) m 值為何?(三分) (2) 方程式的另一根為何?(兩分)
3. 亮均在計算某正數的平方時,不小心將該正數的平方看成該正數的 2倍,結果求出來的答案比正確答
案少 399,請問該正數是多少?
4. 「疏果」是在水果種植上常見的技術,藉由在早期剪除一些果實,便能夠使剩下的水果吸收更多養分,
增加重量提高甜度,因此能夠提高單價,增加果農的收入。有一欉芒果樹原本可結出 60 顆芒果,每顆單
價為 30 元,若果農提早進行疏果,則每剪除 1顆芒果,剩下的芒果每顆單價可提高 3元,已知果農在這
欉芒果樹上剪除了 x顆芒果,將剩下的芒果全數賣出後共得到 3600 元,請回答下列問題:
(第一小題兩分,第二小題三分)
(1) 請依題意列出 x的一元二次方程式 (2) 果農剪除了幾顆芒果 (提示:答案不只一種)
和的平方公式:(a+b)2=a2 +2ab+b2 差的平方公式:(a-b)2=a2-2ab+b2
平方差公式:a2-b2=(a+b)(a-b) 公式解:若 ax2+bx+c=0,則 x=

第4頁 共4頁
花蓮縣立宜昌國民中學 109 學年度第一學期 第三次段考 8年級數學科 答案卷
命題教師:楊家齊老師 考試範圍:康軒版 3-2~4-3 8年____班____號 姓名:___________
一、選擇題:(每題 4分,共 20 分,請作答在答案卷上)
二、填充題:(每格 3分,共 60 分。請將答案填寫在答案卷上)
三、計算題:(每題 5分,共 20 分。請將計算過程及答案填寫在答案卷上)
1. x 的一元二次方程式 ax2+bx+1=0
兩根為 x=
2. 已知 x的一元二次方程式(3m-4)x2
+x-(m+1)=0有一根為 1,試求
(1) m 值為何?(三分)
(2) 方程式的另一根為何?(兩分)
3. 亮均在計算某正數的平方時,不小心
將該正數的平方看成該正數的 2倍,結
果求出來的答案比正確答案少 399,請
問該正數是多少?
4. 「疏果」是在水果種植上常見的技術,藉由在早期剪除一些果實,便能夠使剩下的水果吸收更多養分,增加重量提高
甜度,因此能夠提高單價,增加果農的收入。有一欉芒果樹原本可結出 60 顆芒果,每顆單價為 30 元,若果農提早進行疏
果,則每剪除 1顆芒果,剩下的芒果每顆單價可提高 3元,已知果農在這欉芒果樹上剪除了 x顆芒果,將剩下的芒果全數
賣出後共得到 3600 元,請回答下列問題(第一小題兩分,第二小題三分):
(1) 請依題意列出 x的一元二次方程式 (2) 果農剪除了幾顆芒果 (提示:答案不只一種)

第5頁 共4頁
花蓮縣立宜昌國民中學 109 學年度第一學期 第三次段考 8年級數學科 標準答案
命題教師:楊家齊老師 考試範圍:康軒版 3-2~4-3 8年____班____號 姓名:___________
一、選擇題:(每題 4分,共 20 分,請作答在答案卷上)
二、填充題:(每格 3分,共 60 分。請將答案填寫在答案卷上)
三、計算題:(每題 5分,共 20 分。請將計算過程及答案填寫在答案卷上)
1. x 的一元二次方程式 ax2+bx+1=0
兩根為 x=
,請分別求出 a和b
的值。
答:a=2、b=6
[給分標準]
求出(2x+3)2=7 得3分(可部份給分)
展開 4x2+12x+2=0 得1分
正確求出 a和b得1分
2. 已知 x的一元二次方程式(3m-4)x2
+x-(m+1)=0有一根為 1,試求
(1) m 值為何?(三分)
(2) 方程式的另一根為何?(兩分)
[可視作答完成度部份給分]
答:m=2,另一根為
3. 亮均在計算某正數的平方時,不小心
將該正數的平方看成該正數的 2倍,結
果求出來的答案比正確答案少 399,請
問該正數是多少?
答:21
[給分標準]
列出 2x-x2=-399 得2分
解出 x=21 或-19 得2分
正確寫出正數為 x=21 得1分
4. 「疏果」是在水果種植上常見的技術,藉由在早期剪除一些果實,便能夠使剩下的水果吸收更多養分,增加重量提高
甜度,因此能夠提高單價,增加果農的收入。有一欉芒果樹原本可結出 60 顆芒果,每顆單價為 30 元,若果農提早進行疏
果,則每剪除 1顆芒果,剩下的芒果每顆單價可提高 3元,已知果農在這欉芒果樹上剪除了 x顆芒果,將剩下的芒果全數
賣出後共得到 3600 元,請回答下列問題(第一小題兩分,第二小題三分):
(1) 請依題意列出 x的一元二次方程式 (2) 果農剪除了幾顆芒果 (提示:答案不只一種)
[可視作答完成度部份給分]
答:(1) (60-x)(30+3x)=3600 (2) 剪除 20 顆或 30 顆