國立臺灣海洋大學河海工程學系 2020 工程數學(二) 期末考參考解答
系級: 學號: 姓名:
1. 試求下列
的拉普拉斯轉換為何? (16%)
)
(t
f
(1)
(2)
t
e
t
t
f
2
)
1
(
)
(
t
t
t
f
2
sin
cosh
)
(
(3)
t
t
t
f
2
sin
)
(
(4)
t
t
t
f
sin
1
)
(
2. 試求下列
的拉普拉斯逆轉換為何? (32%)
)
(s
F
(1)
2)
s
e
s
F
)
(
(
s
s
F
3
)
(
(3)
)
(
1
)
(
2
a
s
s
s
F
(4)
3
)
(
1
)
(
a
s
s
F
(5)
4
)
(
2
2
s
s
s
s
F
(6)
s
s
s
F
2
1
)
(
(7)
10
6
1
)
(
2
s
s
s
F
(8)
2
1
ln
)
(
s
s
s
F
3.
請計算下圖函數
的拉普拉斯轉換
。
(10%)
)
(t
f
)
(s
F
f(t)
Filename: EMII-2020-finals.doc ~ by Y. T. Lee June 15, 2020
4.
單位步階函數
(unit step function)
定義為
其中
a
為常數
a
t
a
t
a
t
u
,
0
,
1
)
(
(1)
試將下圖函數
與
以單位步階函數表示。
(6%)
)
(t
g
)
(t
h
(2)
試求
與
之拉普拉斯轉換
與
。
(6%)
)
(t
g
)
(t
h
)
(s
G
)
(s
H
(3)
已知
)
(
)
(
)
(
s
H
s
G
s
F
又
,試求
並繪其圖形。
(10%)
)]
(
[
)
(
1
s
F
t
f
L
)
(t
f
5.
試以拉普拉斯轉換法求解下述微分方程式:
(1)
)
1
(
5
4
t
y
y
y
;
0
)
0
(
y
,
0
)
0
(
y
(10%)
(2)
;
t
t
e
d
t
y
y
y
2
0
)
sin(
)
(
4
1
)
0
(
y
, 0
)
0
(
y
(10%)
6. 試求解下述聯立微分方程組 (10%)
且
與
2
1
2
2
1
1
5
5
y
y
y
y
y
y
1
)
0
(
1
y
3
)
0
(
2
y
7. 對工數的教學或學習有何感想? (5%) 對此門課有何建議? (5%)
g(t)
t
1 1
1
2
t
h(t)
2
1
1
……
t
2
2
3
4
參考公式
拉普拉斯轉換 :
0
)
(
)]
(
[
)
(
dt
e
t
f
t
f
s
F
st
L
第一平移定理:
)
(
)]
(
[
a
s
F
t
f
e
at
L
第二平移定理:
)
(
)]
(
)
(
[
s
F
e
a
t
u
a
t
f
as
L
尺度變換:
)
(
1
)]
(
[
a
s
F
a
at
f
L
微分函數的拉普拉斯轉換:
)
0
(
)
(
)]
(
[
f
s
sF
t
f
L
)
0
(
)
0
(
)
(
)]
(
[
2
f
sf
s
F
s
t
f
L
積分函數的拉普拉斯轉換:
s
s
F
dx
x
f
t
)
(
]
)
(
[
0
L
2
0
0
)
(
]
)
(
[
s
s
F
d
dx
x
f
t
L
拉普拉斯轉換的微分:
)
(
)
1
(
)]
(
[
s
F
ds
d
t
tf
L
)
(
)
1
(
)]
(
[
2
2
2
2
s
F
ds
d
t
f
t
L
拉普拉斯轉換的積分:
s
d
F
t
t
f
)
(
]
)
(
[
L
s
d
d
F
t
t
f
)
(
]
)
(
[
2
L
摺積:
t
t
d
g
t
f
d
t
g
f
t
g
t
f
0
0
)
(
)
(
)
(
)
(
)
(
*
)
(
)
(
)
(
)]
(
*
)
(
[
s
G
s
F
t
g
t
f
L
雙曲函數:
2
cosh
at
at
e
e
at
2
sinh
at
at
e
e
at
初值定理:
)
(
lim
)
(
lim
0
s
sF
t
f
s
t
終值定理:
)
(
lim
)
(
lim
0
s
sF
t
f
s
t
一階線性 ODE:
)
(
)
(
)
(
)
(
x
q
x
y
x
p
x
y
其積分因子為
dx
x
p
e
)
(
Filename: EMII-2020-finals.doc ~ by Y. T. Lee June 15, 2020
參考解答 :
1. 試求下列
的拉普拉斯轉換為何? (16%)
)
(t
f
(1)
(2)
t
e
t
t
f
2
)
1
(
)
(
t
t
t
f
2
sin
cosh
)
(
(3)
t
t
t
f
2
sin
)
(
(4)
t
t
t
f
sin
1
)
(
(1)
t
e
t
t
f
2
)
1
(
)
(
2
1
1
]
1
[
s
s
t
L
2
2
)
2
(
1
2
1
]
)
1
[(
s
s
e
t
t
L
(2)
)
2
sin
2
sin
(
2
1
2
sin
2
2
sin
cosh
)
(
t
t
e
t
e
e
t
t
t
f
t
t
t
t
又
4
2
2
2
]
2
[sin
2
2
2
s
s
t
L
4
)
1
(
2
]
2
sin
[
2
s
t
e
t
L
與
4
)
1
(
2
]
2
sin
[
2
2
s
t
e
t
L
4
)
1
(
1
4
)
1
(
1
]
2
sin
[cosh
2
2
s
s
t
t
L
(3)
4
2
]
2
[sin
2
s
t
L
2
2
2
)
4
(
4
)
4
2
(
]
2
sin
[
s
s
s
ds
d
t
t
L
(4)
1
1
]
[sin
2
s
t
L
s
s
d
t
t
s
1
1
1
2
tan
2
tan
tan
1
1
]
sin
1
[
L
2. 試求下列
的拉普拉斯逆轉換為何? (32%)
)
(s
F
(1)
2)
s
e
s
F
)
(
(
s
s
F
3
)
(
(3)
)
(
1
)
(
2
a
s
s
s
F
(4)
3
)
(
1
)
(
a
s
s
F
(5)
4
)
(
2
2
s
s
s
s
F
(6)
s
s
s
F
2
1
)
(
(7)
10
6
1
)
(
2
s
s
s
F
(8)
2
1
ln
)
(
s
s
s
F
(1)
s
e
s
F
)
(
)
1
(
]
[
)
(
1
t
e
t
f
s
-
L
(2)
s
s
F
3
)
(
3
]
3
[
)
(
1
s
t
f
-
L
)
1
(
1
)]
2
1
1
(
1
[
)
(
2
2
2
1
at
-
e
at
a
s
s
a
s
a
t
f
L
(3)
)
(
1
)
(
2
a
s
s
s
F
(4)
3
)
(
1
)
(
a
s
s
F
at
-
at
-
e
t
s
e
a
s
t
f
2
3
1
3
1
2
1
]
1
[
]
)
(
1
[
)
(
L
L
Filename: EMII-2020-finals.doc ~ by Y. T. Lee June 15, 2020
(5)
4
)
(
2
2
s
s
s
s
F
t
t
t
s
s
s
t
f
-
2
sin
2
2
cos
)
(
]
4
4
4
1
[
)
(
2
2
1
L
(6)
)
1
(
1
1
)
(
2
s
s
s
s
s
F
t
-
e
s
]
1
1
[
1
L
1
]
)
1
(
1
[
)
(
0
1
t
t
x
-
e
dx
e
s
s
t
f
L
(7)
1
)
3
(
1
10
6
1
)
(
2
2
s
s
s
s
F
t
e
s
e
s
t
f
t
-
t
-
sin
]
1
1
[
]
1
)
3
(
1
[
)
(
3
2
1
3
2
1
L
L
(8)
)
2
ln(
)
1
ln(
2
1
ln
)
(
s
s
s
s
s
F
)
1
ln(
)
(
)]
(
[
s
s
G
t
g
L
1
1
)
(
)]
(
[
s
s
G
ds
d
t
g
t
L
t
e
t
g
t
)
(
t
e
t
t
g
1
)
(
)
2
ln(
)
(
)]
(
[
s
s
H
t
h
L
2
1
)
(
)]
(
[
s
s
H
ds
d
t
h
t
L
t
e
t
g
t
)
(
t
e
t
t
g
2
1
)
(
)
(
1
)]
(
[
)
(
2
1
t
t
-
e
e
t
s
F
t
f
L
3. 請計算下圖函數
的拉普拉斯轉換
。(10%)
)
(t
f
)
(s
F
f(t)
Filename: EMII-2020-finals.doc ~ by Y. T. Lee June 15, 2020
並且
,
2
,
0
,
0
,
sin
)
(
t
t
t
t
f
)
2
(
)
(
t
f
t
f
)
1
)(
1
(
1
1
1
1
1
sin
1
1
)]
(
[
2
2
2
0
2
s
e
s
e
e
dt
e
t
e
t
f
s
s
s
st
s
L
1
……
t
2
2
3
4
4. 單位步階函數(unit step function)定義為
其中 a 為常數
a
t
a
t
a
t
u
,
0
,
1
)
(
(1) 試將下圖函數
與
以單位步階函數表示。 (6%)
)
(t
g
)
(t
h
(2) 試求
與
之拉普拉斯轉換
與
。 (6%)
)
(t
g
)
(t
h
)
(s
G
)
(s
H
(3) 已知
)
(
)
(
)
(
s
H
s
G
s
F
又
,試求
並繪其圖形。 (10%)
)]
(
[
)
(
1
s
F
t
f
L
)
(t
f
h(t)
g(t)
Filename: EMII-2020-finals.doc ~ by Y. T. Lee June 15, 2020
(1)
)
1
(
)
(
)
(
t
u
t
u
t
g
)
2
(
)
1
(
)
(
2
)]
2
(
)
1
(
[
)]
1
(
)
(
[
2
)
(
t
u
t
u
t
u
t
u
t
u
t
u
t
u
t
h
(2)
s
e
s
s
s
G
t
g
1
1
)
(
)]
(
[
L
s
s
e
s
e
s
s
s
H
t
h
2
1
1
2
)
(
)]
(
[
L
(3)
)
3
2
(
1
)
(
)
(
)
(
3
2
s
s
e
e
s
s
H
s
G
s
F
)
3
(
)
3
(
)
1
(
)
1
(
3
)
(
2
)
(
*
)
(
)]
(
[
)
(
1
t
u
t
t
u
t
t
tu
t
h
t
g
s
F
t
f
L
t
1 1
1
2
1
t
2
t
1
f(t)
2
3
5. 試以拉普拉斯轉換法求解下述微分方程式:
(1)
)
1
(
5
4
t
y
y
y
;
0
)
0
(
y
,
0
)
0
(
y
(10%)
(2)
;
t
t
e
d
t
y
y
y
2
0
)
sin(
)
(
4
1
)
0
(
y
,
0
)
0
(
y
(10%)
(1) )]
1
(
[
]
5
4
[
t
y
y
y
L
L
[
s
e
s
Y
y
s
sY
y
sy
s
Y
s
)
(
5
)]
0
(
)
(
[
4
)]
0
(
)
0
(
)
(
2
s
e
s
Y
s
s
)
(
)
5
4
(
2
1
)
2
(
)
(
2
s
e
s
Y
s
]
1
)
2
(
[
)]
(
[
)
(
2
1
1
s
e
s
Y
t
y
s
L
L
又
t
e
s
e
s
t
t
sin
]
1
1
[
]
1
)
2
(
1
[
2
2
1
2
2
1
L
L
)
1
(
)
1
sin(
]
1
)
2
(
[
)
(
)
1
(
2
2
1
t
u
t
e
s
e
t
y
t
s
L
(2)
]
[
]
)
sin(
)
(
4
[
2
0
t
t
e
d
t
y
y
y
L
L
2
1
1
1
)
(
4
)
(
)]
0
(
)
0
(
)
(
[
2
2
s
s
s
Y
s
Y
y
sy
s
Y
s
2
1
2
)
(
1
3
2
2
2
2
4
s
s
s
s
Y
s
s
s
)
2
)(
1
)(
3
(
)
1
)(
1
(
)
2
)(
1
)(
3
(
)
1
)(
1
(
)
(
2
2
2
2
2
2
s
s
s
s
s
s
s
s
s
s
s
Y
2
1
3
2
s
D
s
C
s
B
As
)
1
)(
1
(
)
1
)(
3
(
)
2
)(
3
(
)
2
)(
1
)(
(
2
2
2
s
s
s
s
D
s
s
C
s
s
B
As
當
1
s
3
1
C
當
2
s
21
5
D
當
0
s
7
1
B
比較
係數
3
s
7
3
A
]
)
2
(
21
5
)
1
(
3
1
)
3
(
7
1
3
[
)]
(
[
)
(
2
1
1
s
s
s
s
s
Y
t
y
L
L
t
t
e
e
t
t
2
21
5
3
1
3
sin
3
7
1
3
cos
7
3
Filename: EMII-2020-finals.doc ~ by Y. T. Lee June 15, 2020
6. 試求解下述聯立微分方程組 (10%)
且
與
2
1
2
2
1
1
5
5
y
y
y
y
y
y
1
)
0
(
1
y
3
)
0
(
2
y
)
(
)]
(
[
1
1
s
Y
t
y
L
與
)
(
)]
(
[
2
2
s
Y
t
y
L
將聯立微分方程組
做拉普拉斯轉換後可得
2
1
2
2
1
1
5
5
y
y
y
y
y
y
)
(
5
)
(
)
0
(
)
(
)
(
)
(
5
)
0
(
)
(
2
1
2
2
2
1
1
1
s
Y
s
Y
y
s
sY
s
Y
s
Y
y
s
sY
3
)
(
)
5
(
)
(
1
)
(
)
(
)
5
(
2
1
2
1
s
Y
s
s
Y
s
Y
s
Y
s
1
)
5
(
1
)
5
(
3
)
(
,
1
)
5
(
3
)
5
(
)
(
2
2
2
1
s
s
s
Y
s
s
s
Y
由
1
3
)
3
)(
1
(
6
8
3
)
(
2
2
2
3
1
s
D
s
C
s
B
As
s
s
s
s
s
s
s
Y
)
3
3
(
2
)
sinh
3
(cosh
]
1
3
[
)]
(
[
)
(
5
5
2
1
5
1
1
1
t
t
t
t
t
t
-
t
-
e
e
e
e
e
t
t
e
s
s
e
s
Y
t
y
L
L
t
t
e
e
6
4
2
)
3
3
(
2
)
sinh
cosh
3
(
]
1
1
3
[
)]
(
[
)
(
5
5
2
1
5
2
1
2
t
t
t
t
t
t
-
t
-
e
e
e
e
e
t
t
e
s
s
e
s
Y
t
y
L
L
t
t
e
e
6
4
2
Filename: EMII-2020-finals.doc ~ by Y. T. Lee June 15, 2020