
100
年公務人員升官等考試、
100
年關務人員升官等考試試題
代號:
36450
等 別: 薦任
類 科: 化學工程
科 目: 物理化學(包括化工熱力學)
考試時間: 2小時
座號:
※注意:
可以使用電子計算器。
不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。
(請接背面)
全一張
(正面)
常數:h = 6.626 * 10-34 J s,R = 8.314 J K-1 mol-1,g = 9.8 m s-2
一、粒子被限制在一個一度空間的位能能量井,當 L
<
0,V(x) = 0;而在其他位置,
V(x) = ∞。量子力學描述粒子運動的波函數 Ψ所對應的動能,與位能 V及總能量 E
的關係稱為薛丁格爾(Schrödinger)方程式: Ψ=Ψ+
∂
Ψ∂
−ExV
m)(
22
22
h,
2
h
=h,m
為粒子的質量。藉由此方程式的解,也就是稱為所謂的波函數 Ψ,可以計算粒子的
物理量或此物理量的期待值 Ω
,如下: dx
∫∞
∞− ΨΩΨ=Ω
*,其中
代表某一種物
理量的數學運算因子。(20 分)
波恩(Born)對 Ψ的物理意義的解釋:粒子在某一位置上出現的機率,與那個位置上
2
Ψ的值成正比。因為總機率等於 1,所以當 1
2=Ψ
∫∞
∞− dx 時,稱為標準化的波函數
Ψ。藉由位能井所決定的邊界條件,以及積分公式 Cax
a
xaxdx +−=
∫2sin
4
1
2
1
sin 2,
求標準化後之特殊解 Ψ。
已知動量的運算因子是
i
p
=h
),利用標準化的波函數,求動量的期待值 p
,並
說明所得到的值的物理意義。(三角恆等式
cossin22sin =)
二、假設化學反應的莫耳活化能為 ,化合物分子的能量
a
E
,當Nav a
E>
時(Nav為亞
佛加德羅常數),化合物才會發生反應。波茲曼分布(Boltzmann distribution)描述
分子能量的分布現象,其數學關係為 ∑−
=
i
kT
kT
i
i
i
e
e
N
n
ε
,能階 i
的分子數量為 ,N為
總分子數,k為波茲曼常數。依據波茲曼分布的關係,推導化學反應速率常數 k與
溫度 T的關係,所謂阿雷尼斯定律(Arrhenius law):k =
i
n
RTEa
e
,並說明其物理意
義。(20 分)

100
年公務人員升官等考試、
100
年關務人員升官等考試試題
代號:
36450
等 別: 薦任
類 科: 化學工程
科 目: 物理化學(包括化工熱力學)
全一張
(背面)
三、已知熱力學的第一定律,內能 U(internal energy)的微分變化量 dwdqd
;第
二定律,熵 S(entropy)的微分變化量
dq
dS rev
=。考慮一個封閉(closed)系統,
如果其中的 dw 項,只有因為系統體積變化,而與外界環境產生機械能量往來(也
就是功),此外沒有其他形式的功。(20 分)
根據熱焓 H = U + PV 與自由能 G = H – TS 的定義,推導 VdpSd
d
。
已知熱焓可以表示成溫度與壓力的函數,也就是 H = H(T, P)。當系統壓力與外界
壓力相等時,定義系統在定壓下的熱容量為 p
pdT
dq
C⎟
⎠
⎞
⎜
⎝
⎛
≡,證明 p
pdT
dH
C⎟
⎠
⎞
⎜
⎝
⎛
=。
如果系統是理想氣體,證明 dp
p
nR
dT
T
C
dS p−= 。
四、2莫耳的理想氣體,Cp, m = 29.1 J K-1 mol-1,溫度 57℃,壓力 5 bar,經由等溫、不
可逆的膨脹。體積變化的過程中,外界壓力為恆壓pexternal = 1 bar,外界溫度與系統
差10℃,也就是說 10=−TT
U
gsurroundin ℃。系統最後壓力為 1 bar,計算此一變化過程
的q,w,系統內能、熱焓與熵的變化量
、
與
ΔS,外界環境的 gsurroundin
,以
及整個全體的 。(20 分)
total
SΔ
五、已知化學反應Zn(s) + H2O(g) → ZnO(s) + H2(g),在溫度 1280 K的標準反應自由能為
o
GΔ= +33 kJ mol-1。如果此化學反應熱焓在溫度 920 K到1600 K之間,大約保持為
定值, o
HΔ= +224 kJ mol-1。(20 分)
計算溫度為 1280 K 時的反應平衡常數。
計算當反應平衡常數開始大於 1時的溫度。